

JBConnect

[image: _images/jb-jbs-diagram.png]
Paper:
JBrowse Connect: A server API to connect JBrowse instances and users [https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007261&rev=2],
Yao, Buels, Stein, Sen, Holmes, et al. 2020; PLOS Computational Biology

JBConnect provides the following features:

	Sails JS [http://sailsjs.org] - NodeJS [http://nodejs.org]/Expressed-based

	Tightly integrated with JBrowse

	Track & Dataset Management with JBrowse integration

	RESTful track data access

	Track API (CRUD)

	Auth and Secure Tracks/Datasets/Assets

	Track/Asset SubPub events with Socket.io [http://socket.io]

	Flexible Authentication – (Passport.js [http://passportjs.org]) supporting
strategies, like OAuth2, OpenID, etc.

	User management services

	Policy Engine f0r managing access to Tracks, Datasets, Services, Assets

	Extensible server-side analysis with workflow abstraction and job queue

	Waterline ORM [http://waterlinejs.org/] (MongoDB, MySQL, Postgres, Redis, etc.)
with integrated
Blueprint [https://sailsjs.com/documentation/concepts/blueprints] object models

	npm installable hook model supporting both client-side (JBrowse plugins)
and server-side extensions in a single package.

	Grunt – task management (minification, watches, etc.)

Quick Start

The quick start instructions demonstrate installing JBConnect with JBrowse
loaded as a an NPM module (since JBConnect is generally intended to be a companion of JBrowse.
JBrowse may also be installed in a separate directory.
(See JBrowse Installed In Separate Directory.)

Pre-Install

JBConnect requires sailsjs [https://sailsjs.com/] and redis [https://redis.io/] . Redis is only used by the queue framework
(kue [https://www.npmjs.com/package/kue])

yum install redis
redis-server
npm install -g sails@1.0.2

Install

Install the JBConnect and JBrowse. jb_setup.js ensures the sample data is loaded.

git clone http://github.com/gmod/jbconnect
cd jbconnect
npm install
npm install @gmod/jbrowse@1.15.1
patch node_modules/@gmod/jbrowse/setup.sh fix_jbrowse_setup.patch
./utils/jb_setup.js

The patch operation is needed to make JBrowse 1.15.1 setup.sh run properly.
If JBrowse is installed in another location, the patch should be run before setup.sh.

Run

Launch the server.

sails lift

From a web browser, access the application.

http://localhost:1337/login

You will arrive at the following screen

[image: _images/login.png]
The default username/password: juser/password

Vulnerabilty Warnings

npm currently reports a number of vulnerability warnings of various degrees of severity,
most of which are coming from Sails. Many of these warnings are fixed in a later version
of SailsJS. We hope in a future release of the software to correct more of these warnings.

Contents

	Features
	Directory Layout

	jbutil Command

	Queue Framework

	Configuration

	Client-Side Plugins

	Web Includes

	Standalone Register / Login / Logout Routes

	Test Framework

	Documentation Framework

	Configuration Options
	JBrowse Installed In Separate Directory

	Configuration Files

	Limiting Query Size

	Installing JBConnect jbh-hooks

	JBClient Plugin

	Job Service Configuration

	Extending jbutil

	JBConnect Hooks
	Directory Layout

	package.json

	Configurations

	Client-Side JBrowse Plugins

	Extending Commands

	Sails Module Layout

	Job Service

	Tutorials
	JBConnect Hook Tutorial

	Creating a Stand-Alone Job Service for local workflow processing

	API
	Namespace: AuthController

	Module: controllers/DatasetController

	Module: controllers/JobActiveController

	Module: controllers/JobController

	Module: controllers/ServiceController

	Module: controllers/TrackController

	Module: controllers/UserController

	Module: models/Dataset

	Module: models/Job

	Module: models/JobActive

	Module: models/Passport

	Module: models/Service

	Module: models/Track

	Module: models/User

	Module: policies/bearerAuth

	Module: policies/isAdmin

	Module: policies/passport

	Module: policies/sessionAuth

	Module: services/jbutillib

	Module: services/passport

	Module: services/postAction

	Module: services/serviceProc

Features

JBConnect is a server/analysis framework for JBrowse and has the following features:

Directory Layout

JBConnect project
├── api Standard sails API layout, models, controllers, etc.
├── assets contains client accessible assets
├── bin Utilities
├── config Configuration files.
│ └── globals.js global config file for module
├── data Contains the local database file
│ └── localDiskDb.db Local database file
├── docs Documentation
│ └── genapi-rst jsdoc generated rst files
├── plugins Client-side Plugins
│ └── JBClient Client plugin
├── test Test
├── views Login / registration pages
├── Gruntfile.js Grunt config
├── jbutil JBConnect Utility (exe)
└── package.json

jbutil Command

jbutil is a setup/configuration utility for JBConnect. *-jbconnect-hook modules can extend
jbutil command options. (see: jbs-hooks-extend)

This example shows that JBlast adds a number of commands to jbutil

todo: update help

$./jbutil --help
Usage: jbutil [OPTION]
 --config display aggregated config
 --blastdbpath=PATH (jblast) existing database path
 --setupworkflows (jblast) [install|<path>] "install" project wf, or specify .ga file
 --setuptools (jblast) setup jblast tools for galaxy
 --setupdata (jblast) setup data and samples
 --setupindex (jblast) setup index.html in the jbrowse directory
 --setuphistory setup history
 -h, --help display this help

See: jbs-jbutilextending_

Queue Framework

JBConnect uses Kue [https://automattic.github.io/kue/] as the basis for the queue framework.
However, Kue is encapsulated in the Job model/controller.
Since Kue requires redis [https://redis.io/] database,
redis server must be running. An integrated job panel is available when
the JBClient plugin is active. (see: JBClient Plugin)

For diagnostic purposes, a Kue utility can be used to view/manage the Kue database
content: http://localhost:1337/kue

This route can be disabled with in config/http.js.

Configuration

JBConnect configurations are in config/globals.js

jbrowse: {
 jbrowseRest: "http://localhost:1337", // path accessible by web browser
 jbrowsePath: jbPath, // or point to jbrowse directory (ie. "/var/www/jbrowse/")
 routePrefix: "jbrowse", // jbrowse is accessed with http://<addr>/jbrowse
 dataSet: [
 {
 dataPath: "sample_data/json/volvox" // registered datasets.
 }
]
}

Client-Side Plugins

Client-side plugins are in the plugins directory. Plugins will automatically
be accessible by the client side. However, they need to be configured in the plugins:
section of the particular dataset in JBrowse trackList.json.

Plugins are copied to the configured JBrowse instance upon sails lift.

Web Includes

libroutes maps dependancy routes for client-side access.
These provide access to modules that are required for use by the client-side
plugins or other client-side code.
The framework looks for libroutes.js in , in their respective config directories

For example: for the module jquery,
The module is installed with ‘npm install jquery’
The mapping the mapping ‘jquery’: ‘/jblib/jquery’
makes the jquery directory accessible as /jblib/jquery from the client side.

Library Routes are virtual routes, in that they only exist when the server is lifted.
They are virtually mapped to their respective locations in the node_modules directory.

config/libroutes.js:

module.exports = {
 lib: {
 'jquery.mb.extruder': '/jblib/mb.extruder',
 'jQuery-ui-Slider-Pips': '/jblib/slider-pips',
 'jquery-ui-dist': '/jblib/jquery-ui'
 }
};

Standalone Register / Login / Logout Routes

Stand-alone routes allow for basic register/login/logout functionality free
from the JBrowse interface.

[image: _images/login-register.png]
Logout: http://<address>:1337/logout

Get Login State: http://<address>:1337/loginstate

The routes are defined in config/routes.js.

At the moment, these are the only user related GUI interfaces there are. It is intended to add more complete
management and password management interfaces down the road.

Note: Stand-alone interfaces use `bootstrap <http://getbootstrap.com/>`_

Login/Logout Panel

Login Panel

[image: _images/login-integrated.jpg]
Loguot Panel

[image: img/logout-integrated.jpg]

Job Queue Panel

JBConnect uses Kue as the queue framework. Since Kue requires redis database,
redis server must be running. An integrated job panel is available when
the JBClient plugin is active. (see: JBClient Plugin)

Integrated Job Panel:

[image: _images/job-panel.png]

Test Framework

Test framework uses

	Mocha for unit test

	Nightwatch for end-to-end, supporting phantomjs, selenium and online service such as browserstack.

	Istanbul for coverage

To execute

npm test

by default nightwatch is setup for phantomjs.
Selenium requires running an additional selenium server

package.json:

"scripts": {
 "test": "nyc node ./node_modules/mocha/bin/mocha test/bootstrap.test.js test/integration/**/*.test.js test/e2e/**/*.test.js --nightwatch-test phantomjs",
},

The option --nightwatch-test can be:

	phantomjs - runs client tests with phantomjs

	selenium - runs client tests with selenium

	browserstack - runs client test with selenium through remote browserstack account.

Documentation Framework

For integrated documentation, JSdoc3 [http://usejsdoc.org/] is used
to generate API docs from code with jsdoc-sphinx, a jsdoc template that generates
RestructuredText (RST) and Sphinx. This enables support for
readthedocs [https://readthedocs.org/].

See: RST/Sphinx Cheatsheet [http://openalea.gforge.inria.fr/doc/openalea/doc/_build/html/source/sphinx/rest_syntax.html]

Generate docs:
npm run gendocs

This will generate docs/api.rst. This must be committed and pushed for it
to appear in jbconnect.readthedocs.io.

Configuration Options

JBrowse Installed In Separate Directory

The JBrowse directory can also be configured manually. (See jbs-globals-js)

Configuration Files

A number of configuration files are in the ./config directory. A few of the
more important ones (ones that JBSserver touches) are described mentioned in the table below.
See Sails Configuration [http://sailsjs.com/documentation/reference/configuration]
for a better description of the configuration framework.

	jbs-globals-js

	global configuration file

	http.js

	Custom middleware and /jbrowse route is setup here.

	passport.js, policies.js

	passport framework and auth policies config

	routes.js

	various route configurations

	connections.js

	choice of database - local, mongo, mysql, …
(we use local by default.) The DB file is in the
./data/localDiskDb.db.

globals.js

To view aggregate configuration: ./jbutil --config

The aggregate config is the merged globals.js combined with the globals.js of
server hook modules.

The aggregate config file is the merged config of JBConnect and its installed jbh- (hook)
modules.

Edit config file: nano config/globals.js

jbrowse: {
 jbrowseRest: "http://localhost:1337",
 jbrowsePath: jbPath, // or "/var/www/jbrowse/"
 routePrefix: "jbrowse", // jbrowse is accessed with http://<addr>/jbrowse

 dataSet: {
 Volvox: {path: "sample_data/json/volvox"}
 },

 // search service settings
 serverSearch: {
 resultPath: "ServerSearch",
 resultCategory: "Search Results",
 trackTemplate: "ServerSearchTrackTemplate.json",
 workflowScript: "ServerSearch.workflow.js",
 processScript: 'ServerSearchProcess.html'
 },
 // search job service registration
 services: {
 'serverSearchService': {name: 'serverSearchService', type: 'service'}
 },

 /*
 * Virtual Routes
 * These routes reference node_modules that are used by the client and
 * accessed by virtual route.
 */
 libRoutes: {
 // name node_modules dir virtual route
 'jquery': {module: 'jquery', vroute:'/jblib/jquery'},
 'bootstrap': {module: 'bootstrap', vroute:'/jblib/bootstrap'},
 'jqueryui': {module: 'jquery-ui-dist', vroute:'/jblib/jquery-ui'},
 'mbextruder': {module: 'jquery.mb.extruder', vroute:'/jblib/mb.extruder'}
 },
 /*
 * Web Includes
 * These includes are injected into JBrowse ``index.html`` upon ``sails lift``.
 */
 webIncludes: {
 // key virtual route
 "css-bootstrap": {lib: "/jblib/bootstrap/dist/css/bootstrap.min.css"},
 "css-mbextruder": {lib: "/jblib/mb.extruder/css/mbExtruder.css"},
 "css-jqueryui": {lib: "/jblib/jquery-ui/jquery-ui.min.css"},
 "css-jqueryuistructure": {lib: "/jblib/jquery-ui/jquery-ui.structure.min.css"},
 "css-jqueryuitheme": {lib: "/jblib/jquery-ui/jquery-ui.theme.min.css"},
 "js-sailsio": {lib: "/js/dependencies/sails.io.js"},
 "js-jquery": {lib: "/jblib/jquery/dist/jquery.min.js" },
 "js-jqueryui": {lib: "/jblib/jquery-ui/jquery-ui.min.js" },
 "js-bootstrap": {lib: "/jblib/bootstrap/dist/js/bootstrap.min.js"},
 "js-mbextruderHover": {lib: "/jblib/mb.extruder/inc/jquery.hoverIntent.min.js"},
 "js-mbextruderFlip": {lib: "/jblib/mb.extruder/inc/jquery.mb.flipText.js"},
 "js-mbextruder": {lib: "/jblib/mb.extruder/inc/mbExtruder.js"}
 }
}

Limiting Query Size

The query size (# of base pairs) can be limited. This might be necessary to contain the
processing or contain memory consumption of client and server.,
particularly with operations like BLAST where the BLAST database may be very large.

Add the following option to the trackList.json of the dataset configuration:

{
 ...
 "bpSizeLimit": 25000,
 ...
},

This will cause an alert message when the selected query size exceeds 25000 bp.

If omitted, the allowed size will be unlimited.

We definitely recommend using this setting for larger assemblies.

Installing JBConnect jbh-hooks

A ‘JBConnect Hook’ is basically an installable sails hook with specific methods for
extending JBConnect. JBConnect hooks must have the prefix jbh- prepended to the name.
For example: jbh-jblast. When the hook is installed (i.e. npm install jbh-jblast). JBConnect
will automatically integrate a number of features of the hook directly into JBConnect upon sails lift.

The jbh- hook can extend JBConnect in the following ways:

	Extend models, controllers, policies and services

	Integrated client-side JBrowse plugins injection

	Integrated client-side npm module injection

	Integrated job services (see: jbs-jobservice_)

	Integrated configuration tool (jbutil)

	Aggregated configurations

Installing a hook:

npm install jbh-<hook name> (i.e. jbh-jblast)

For detailed info on jbh-hooks, see: JBConnect Hooks

JBClient Plugin

JBrowse GUI intetrated interfaces are available when the JBClient plugin is
configured on in the JBrowse client.

To enable integrated features within the JBrowse app, modify the dataset’s
trackList.json, adding JBClient plugin to the configuration.

Note: the JBClient plugin is not physically in the JBrowse plugin directory.
It is available as a route.

"plugins": [
 "JBClient", <-----
 "NeatHTMLFeatures",
 "NeatCanvasFeatures",
 "HideTrackLabels"
],

Job Service Configuration

Job services (jservice) are a special type of service that are used to extend RESTful API service
and serve processing for job operations.

Configuration is defined in config/globals.js under the jbrowse section under service.

A definition: <indexname>: {name: <servicename>, type:<type>, alias:<alias> }

	where:

	
	indexname - is the reference name service (generally the same as servicename)

	servicename - is the name of the service reference the service code in api/services.

	type - is the type of service. either “workflow” or “service”

	alias - (optional) if specified, the service can also be referenced by the alias name.

	jservice type:

	
	workflow - service can serve job execution and RESTful interfaces

	service - service only serves RESTful interfaces

Job service config in config/globals.js:

// list of services that will get registered.
services: {
 'basicWorkflowService': {name: 'basicWorkflowService', type: 'workflow', alias: "jblast"},
 'filterService': {name: 'filterService', type: 'service'},
 'entrezService': {name: 'entrezService', type: 'service'}
},

Extending jbutil

jbutil is a command line utility that is used to configure JBConnect in various
ways. jbutil can be extended by a installable hook through bin/jbutil-ext.js.

jbutil-ext.js must imeplement these function:

module.exports = {
 // this return the options that the module support. In this example,
 // we add -t or --test and --thing options to jbutil.

 getOptions: function() {
 return [
 ['t' , 'test=ARG', '(jbh-myhook) this is a test option'],
 ['' , 'thing', , '(jbh-myhook) this is another test option']
];
 },

 // Extends the help display
 // In this example, we describe how to use --test with a parameter value "abc"

 getHelpText: function() {
 return "\nExample: ./jbutil --test abc\n";
 },

 // process options
 // where opt - the option list.
 // path - path of the module that will process the option (i.e. "./node_modules/jbh-jblast"
 // config - the aggregate globals.js config.

 process: function(opt,path,config) {
 var tool = opt.options['setupindex'];
 if (typeof tool !== 'undefined') {
 jblib.exec_setupindex(this.config);
 jblib.exec_setupPlugins(this.config);
 }

 var tool = opt.options['dbreset'];
 if (typeof tool !== 'undefined') {
 }

See npm module node-getopt [https://www.npmjs.com/package/node-getopt] for more info.

JBConnect Hooks

JBconnect-Hook leverages the Sails Installable Hook [http://sailsjs.com/documentation/concepts/extending-sails/hooks/installable-hooks]
framework and adds facilities to extend it for JBConnect:

	Job Service integration - provides a runnable job that is launched by the job queue. This may also include an adapter for local or 3rd party server API access such as Galaxy.
It may also implement REST APIs specific to the service. The actual adapter portion is optional.

	The Job Queue relies on the adapter to provide translated job state information and execution pre and post processing of the analysis operations.

	The REST API service of the Job Service is a different interface than the standard sails controller interfaces.

	JBrowse plugin / injection (plugins that are tightly integrated with the server-side hooks) along with client-side module dependencies, used by the JBrowse plugins.
The injection occurs upon sails lift and copies the necessary plugins into the JBrowse server plugins directory.

	Model/controllers/services as provided by Sails Blueprints. These services are merged with native server models/controllers/services into globally accessible objects.

	Commands via (jbutil) - command options and implementation are merged with the function of jbutil, providing extended command capabilities specific to the JBConnect hook.

	Configurations are aggregated with the JBConnect server configurations.

Directory Layout

This is the standard directory layout of a JBConnect hook module

*-jbconnect-hook project
├── api Standard Sails modules layout
│ ├── controllers
│ ├── hooks
│ │ └── Myhook
│ │ └── index.js The main hook
│ ├── models
│ ├── policies
│ └── services
├── bin
│ └── jbutil-ext.js jbutil extension module
├── config
│ └── globals.js Config file for module
├── plugins Client-side Plugins
│ └── PluginA
└── package.json

package.json

JBConnect hooks extend sails hooks and are required to contain the following section in the package.json:

"sails": {
 "isHook": true,
 "hookName": "jblast-jbconnect-hook",
 "isJBConnectHook": true
}

Note the naming convention *-jbconnect-hook is required.

Configurations

This file contains the default config options that are specific to the hook module.
These config options are merged with other JBConnect hooks and the JBConnect config/globals.js.

From JBConnect, use ./jbutil --config to see the aggregated config.

Configurations in globals.js are intended to be project defaults. Configurations can also be in JBConnect’s root directory, called jbconnect.config.js,
which are user modified configurations.

Client-Side JBrowse Plugins

JBrowse plugin associated with the JBConnect hook can be deployed with the JBConnect hook. The framework provides for injecting JBrowse plugins into the working JBrowse directory
along with any client-side dependency modules used by the plugin.

The following illustrates how to create a client-side plugin under the framework, with its various configation options.

Developing JBrowse Plugins Under the Framework

Refer to Writing JBrowse Plugins [https://jbrowse.org/docs/plugins.html] for more information.

Client-side plugins in plugins directory are copied to the target JBrowse plugins
directories upon sails lift.

A plugin can be disabled if it has an entry in the excludePlugins: section
of config/globals.js file or jbconnect.config.js.

jbrowse: {
 ...
 excludePlugins: {
 "ServerSearch": true // doesn't work with JBrowse 1.13.0+
 },
 ...
}

Web Include (client dependencies)

Web Includes maps dependancies for client-side access.
These are routes to modules that are required for use by the client-side
plugins or other client-side code.
The framework looks for globals.js in jbh- (hook modules), in their respective config directories

For example: for the dependency module jquery,
Relevant assets are copied into assets/jblib by bin/postinstall.js
The mapping the mapping ‘js-jquery’: ‘/jblib/jquery’
makes the jquery directory accessible as /jblib/jquery.min.js from the client side.

globals.js

...

jbrowse: {
 /*
 * Web Includes
 * These includes are injected into JBrowse upon sails lift (see tasks/pipeline.js).
 */
 webIncludes: {
 "css-bootstrap": {lib: "/jblib/bootstrap.min.css"},
 "css-mbextruder": {lib: "/jblib/mb.extruder/mbExtruder.css"},
 "css-jqueryui": {lib: "/jblib/jquery-ui.min.css"},
 "css-jqueryuistructure": {lib: "/jblib/jquery-ui.structure.min.css"},
 "css-jqueryuitheme": {lib: "/jblib/jquery-ui.theme.min.css"},
 "js-sailsio": {lib: "/js/dependencies/sails.io.js"},
 "js-jquery": {lib: "/jblib/jquery.min.js" },
 "js-jqueryui": {lib: "/jblib/jquery-ui.min.js" },
 "js-bootstrap": {lib: "/jblib/bootstrap.min.js"},
 "js-mbextruderHover": {lib: "/jblib/mb.extruder/jquery.hoverIntent.min.js"},
 "js-mbextruderFlip": {lib: "/jblib/mb.extruder/jquery.mb.flipText.js"},
 "js-mbextruder": {lib: "/jblib/mb.extruder/mbExtruder.js"}
 },
}
...

Extending Commands

jbutil is a general command of JBConnect that are used for various operations.
jbutil-ext.js can be used by the hook to extend options of jbutil.

	it can extend new command line options

	it can extend the help (i.e. ./jbutil --help)

This is a simplified example of jbutil-ext.js.

module.exports = {

 // defining the options
 getOptions: function() {
 return [
 ['f' , 'fox' , 'make a fox sound'],
 ['d' , 'dog' , 'take out the dog'],
];
 },

 // this is displayed when the user uses the --help or -h option
 getHelpText: function() {
 return "What does the fox say\n"+
 "./jbutil -fox\n"+
 'Take out the dog\n"+
 "./jbutil -dog\n";

 },

 // processing the options
 process: function(opt,path,config) {
 if (opt.options['cat']) {

 }
 if (opt.options['dog']) {

 }

 },

 // do some pre initialization
 init: function(opt,path,config) {
 return 1; // successful init, or 0 if failed.
 }

};

More info about the command options processor can be found in node-getopt [https://www.npmjs.com/package/node-getopt] .

Additional non-jbutil commands

The hook can also deploy any additional commands in the JBConnect’s utils directory.

Sails Module Layout

This is the standard sails directory layout for models, controllers, policies, and services of a sails hook.
The framework uses marlinspike to integrate controllers, models, policies,
and services into JBConnect.

hook project root
├── api Standard Sails modules layout
 ├── controllers optional
 ├── hooks hook core index.js in here
 ├── models optional
 ├── policies optional
 └── services Job services and supporting modules in here.

A core index.js is in api/hooks/<hook name>/index.js
and can be basically be copied from here [https://github.com/GMOD/jblast-jbconnect-hook/blob/master/api/hooks/jblast/index.js] .

This core fragment starts the initialization of the hook.

Job Service

A job service is a special service that can react to the job queue
framework asking it to execute something.

The job service generally resides in api/services directory of the hook and is named <something>Service.js.

Function Map

Job services must contain a fmap section which defines the routes that the
job service exposes. And there should be corresponding routes (or REST APIs) defined
in the module. The fmap section must exist, but does not need to be populated.

module.exports = {
 fmap: {
 set_filter: 'post',
 get_blastdata: 'get',
 get_trackdata: 'get'
 },

 // each function should be implemented in the job service
 set_filter(req, res) {
 var requestData = req.allParams();
 ...
 return res.send(ret);
 },
 get_blastdata(req, res) {
 var requestData = req.allParams();
 ...
 return res.send(ret);
 },
 get_trackdata: function(req, res) {
 var requestData = req.allParams();
 ...
 return res.send(ret);
 },

For request parameters, see:
Sails req [https://sailsjs.com/documentation/reference/request-req]

For response options, see:
Sails res [https://sailsjs.com/documentation/reference/response-res]

Calling fmap functions

fmap functions are called with either GET or POST using the URL route
(eg. "/service/exec/set_filter"). Parameters can be passed as data payload
or as URL parameters.

Our handling functions generally use var requestData = req.allParams(),
making the handlers rather indiscriminate to how the parameters are passed.

An example of a POST request:

var postData = {
 filterParams: filter,
 asset: "152_search_1517988101045", // usually the track.label name
 dataset: "sample_data/json/volvox"
}
$.post("/service/exec/set_filter", postData , function(data) {
 console.log(data);
}, "json");

An example of a GET request:

$.get("/service/exec/get_blastdata/?asset="+browser.jblast.asset+'&dataset='+encodeURIComponent(browser.config.dataRoot), function(data){
 console.log(data);
 $('.blast-hit-data').html("Hits: ("+data.filteredHits+'/'+data.hits+")");
});

Function Name Overlap

If two job services have the same function name, the first the first job service
registered will take precedent.

For example: Say serviceA and serviceB both have a fmap function called my_function,
and serviceA is defined before serviceB, then calling /service/exec/my_function will
execute serviceA.my_function.

However, serviceB.my_function can still be addressed with the service-specific calling format,
/service/exec/serviceB:my_function.

Obligatory Functions for Job Runners

Job services that are job runners that react to job execution, must implement the following functions:

// job service parameter validation
// jservice calls this to determine if the parameters are sufficient to execute the job.
validateParams: function(params) {
 if (typeof params.searchParams === 'undefined') return "searchParams not defined";
 if (typeof params.searchParams.expr === 'undefined') return "search string undefined";
 return 0; // success
},
// job name generator
// jservice framework calls this to determine the jobs user-readable name that appears in the job queue.
generateName(params) {
 return params.searchParams.expr+' search';
},
// jservice calls this to execute the job. ``kJob`` is the kue object.
beginProcessing(kJob) {
 if (successful) kJob.kDoneFn();
 if (failed) kJob.kDoneFn(Error("this job failed because..."));
}

Job Service Configuration

Job services are defined in config/globals.js or in jbconnect.config.js.

jbrowse: {
 // list of services that will get registered.
 services: {
 // service display name type alias
 'basicWorkflowService': {name: 'basicWorkflowService', type: 'workflow', alias: "jblast"},
 'filterService': {name: 'filterService', type: 'service'},
 'entrezService': {name: 'entrezService', type: 'service'}
 },

where
- service refers to the job service module name
- display name is the human readable name of the service
- type - workflow means it’s a job runner and service means it only hosts route functions.

service can either be the service module name (ie. “basicWorkflowService”)
or an the alias, if an alias if defined, given the configuration example below.

Submitting a Job

A Job Service must be implemented as a job runner to be a queueable job. (See jbs-jobrunner)

This is an example of job submission. The content of the POST data will depend
of the type of job that is being submitted. However, service: must be
included and reference an existing job service.

var postData = {
 service: "jblast", // this can be the name of the job service or its alias
 dataset: "sample_data/json/volvox",
 // FASTA formated query sequence
 region: ">ctgA ctgA:44705..47713 (- strand) class=remark length=3009\nacatccaatggcgaacataa...gcgagttt",
 workflow: "NCBI.blast.workflow.js"
 };
$.post("/job/submit", postData , function(result) {
 console.log(result);
}, "json");

Tutorials

JBConnect Hook Tutorial

api/services/localCommonService.js is a workflow processing Job Service that can be used to execute general workflows scripts.
In this example, we present demo analysis hook (demo-jbconnect-hook [https://github.com/GMOD/demo-jbconnect-hook]). We show how to create a client-side JBrowse plugin that integrates with JBrowse,
adding a menu item under Analyze menu.

[image: _images/sample-menu.png]
It’s a fully functional demo module that has a server-side execution shell script and performs
some arbitrary processing. The example also demonstrates the client-side plugin collects user data in its submit dialog box and passes it
to be used by the execution script.

[image: _images/sample-dialog.png]
The demo hook described in this section can be found here: <https://github.com/GMOD/demo-jbconnect-hook`_

JBCdemo JBrowse Plugin

This section describes a complete JBConnect installable hook.

The directory layout of a hook project is as such:

JBConnect project
├── api Standard sails API layout, models, controllers, etc.
│ └── hook
│ └── index.js hook index
├── bin Utilities
│ ├── jbutil-ext.js jbutil command extensions
│ └── postinstall.js package post installation
├── config Configuration files.
│ └── globals.js global config file for module
├── plugins Client-side Plugins
│ └── JBCdemo Demo client plugin
├── package.json Node package description
└── workflows Workflows directory
 ├── demo-job.demo.wf.sh Workflow script
 └── demo-job.TrackTemplate.json TrackTemplate

api/hook/index.js

The main purpose of this file is to facilitate merging the configurations, models and controllers with the main JBConnect,
making them available globally.

Extending jbtuil command

jbutil-ext.js provides a means for the hook to extend the jbutil command.

This is further described in `https://jbconnect.readthedocs.io/en/latest/configuration.html#extending-jbutil`_

bin/postinstall.js

This performs the important roll of copying the workflows in the hook project into the workflows directory of JBConnect.

It can also be use to perform other post-install setup.

globals.js & workflowFilter

globals.js are merged with globals.js in JBConnect.

For the demo the workflowFitler applies to the get_workflow enumeration call

In main.js of the plugin the following structure is defined.

// analyze menu structure
browser.jbconnect.analyzeMenus.demo = {
 title: 'Demo Analysis',
 module: 'demo',
 init:initMenu,
 contents:dialogContent,
 process:processInput
};

Note that the module, defined as ‘demo’ here, is used by get_workflows call to filter the available workflows for a particular plugin.
The definition in workflowFilter for ‘demo’ describes the filter. Only files that contain ‘.demo.wf’ will be returned by get_workflows.

module.exports.globals = {
 jbrowse: {
 workflowFilter: {
 demo: {filter: '.demo.wf'},
 },
 ...
 }
};

In the file constructor of main.js, we find:

// analyze menu structure
browser.jbconnect.analyzeMenus.demo = {
 title: 'Demo Analysis',
 module: 'demo',
 init:initMenu,
 contents:dialogContent,
 process:processInput
};

The source can be found here: `https://github.com/GMOD/demo-jbconnect-hook/blob/master/plugins/JBCdemo/js/main.js`_

where,

	title is the title of the dialog box that is launched from the Analyze Menu.

	module is the module that is module name. Coincides with module name used in `Configuration of sample workflow script`_

	init is the function that initializes the selection items in the Analyze Menu for the module.

	contents is a function that builds the contents of the dialog box. This can be used to collect custom data prior to submitting.

	process is a function that collects the custom data from the fields created by contents to pass through the submit function.

In our example, the initMenu() does the setup of the Analyze menu item and when the item is selected by the user, it detects if a region has been
highlighted. This is a pretty common thing that is check by nearly all our processing modules. If the region is not highlighted,
We show an instructional dialog box instructing the user to highlight a region using JBrowse’s highlight feature.

In dialogContent(), we render an additional field in the submit dialog box for CUSTOM_DATA. The user can type any value in the input box.
Upon submitting the job, the demonstration shows how data is passed from the user end to the execution script.

processInput() is called when the user clicks submit. Here we show the custom input field data are cellected and we show how to pass the
field data to the system and ultimately submitted to JBConnect.

Again, processing begins through localCommonService.js, the thing that takes control of the job and launches the workflow script that was selected by the user.
Note, the user will not see the workflow selection box unless there are more than one workflow. In our case, there is only one workflow script, so
it will automatically be selected by the client plugin code.

demo-job.demo.wf.js Worflow Script

The workflow script resides in the workflow directory.
In this example sample.samp.wf.js is a very simple script that copies sample.gff3 to the target directory; in demonstrating
the passing of data from the client side to the server side script, it extracts the CUSTOM_DATA field that was captured
by the JBSample plugin and appends the value to every feature of sample.gff3.

cmd <id> <jobid> <jobdata> <tmpdir> <outdir>
echo "> my.sample.wf.sh " $0 $1 $2 $3 $4 $5

copy sample.gff3 to target dir
cp ./bin/sample.gff3 "$5/$2.gff3"

extract value of CUSTOM_DATA
MYVALUE=$(awk -v k=CUSTOM_DATA -F: '/{|}/{next}{gsub(/^ +|,$/,"");gsub(/"/,"");if($1==k)print $2}' $3)

add CUSTOM_DATA=MYVALUE as attribute to all features
sed -e "s/$/;CUSTOM_DATA=$MYVALUE/" -i "$5/$2.gff3"

Note the 5 parameters that are passed to the command by localCommonService.

	$0 is the script path (ie: “/home/theuser/jbconnect/workflows/sample.samp.wf.sh”)

	$1 <id> the job id (ie: “32”)

	$2 <jobid> the job name (ie: “32-sample”)

	$3 <jobdata> path of the job data file (ie: “/home/theuser/jbconnect/tmp/32-sample-jobdata.json”)

	$4 <tmpdir> the directory where temporary or intermediate files might be placed.

	$5 <outdir> is the target directory where result files (like gff3 files) might be placed.

The full command looks something like this:

/home/theuser/jbconnect/workflows/sample.samp.wf.sh 32 32-sample
 /home/theuser/jbconnect/tmp/32-sample-jobdata.json
 /home/theuser/jbconnect/tmp /home/theuser/jb1151/sample_data/json/volvox/sample

localCommonService expects to see a file <outdir>/<jobid>.gff3. So, the script creates this result file in the target directory based on the given
input parameters of the script. This is just the way localCommonService works. If the application requires other result files, a another Job Service would need to be
created. (see Creating a Stand-Alone Job Service for local workflow processing)

The script can be found under the workflows dir, here [https://github.com/GMOD/jbconnect/blob/master/workflows/sample.samp.wf.sh]

Configuration of localCommonService

The configuration is required to enable the system to recognize that the Job Service exists.

services: {
 'localCommonService': {enable: true, name: 'localCommonService', type: 'workflow', alias:'workflow'}
},

Creating a Stand-Alone Job Service for local workflow processing

This tutorial demonstrates how to create a job service that can be executed by the JBlast Plugin.

The source code for the tutorial can be found here [https://github.com/GMOD/jbconnect/blob/master/api/services/sampleJobService.js]

Job Runner functions

The function map defines the REST APIs that the job service supports.
In the function map (fmap), get_workflow function is minimally require from the Process BLAST dialog.
get_hit_details is not required since we don’t actaully do a blast operation in the example.

module.exports = {

 fmap: {
 get_workflows: 'get'
 },

(required by Job Service)

Provides opportunity to initialize the Job Service module.

init(params,cb) {
 return cb();
},

(required by Job Runner Service)

Provides mechanism to validate parameters given by the job queuer.
Since our example job is submitted by JBlast, we extect to see a region parameter.

validateParams(params) {
 if (typeof params.region === 'undefined') return "region not undefined";
 return 0; // success
},

(required by Job Runner Service)

Job service generate readable name for the job that will appear in the job queue

generateName(params) {
 return "sample job";
},

(required by JBClient, not required for Job Services in general)

Return a list of available available options. This is used to populate the Plugin’s Workflow.
This should minimally return at least one item for JBlast client to work properly.
Here, we are just passing a dummy list, which will be ignored by the rest of the example.

get_workflows (req, res) {

 wflist = [
 {
 id: "something",
 name: "sample do nothing job",
 script: "something",
 path: "./"
 }
];

 res.ok(wflist);
},

(required by Job Runner Service)

beginProcessing() is called by the job execution engine to begin processing.
The kJob parameter is a reference to the Kue [https://www.npmjs.com/package/kue] job.

beginProcessing(kJob) {
 let thisb = this;
 let nothingName = "sample nothing ";

 kJob.data.count = 10; // 10 seconds of nothing
 let f1 = setInterval(function() {
 if (kJob.data.count===0) {
 clearInterval(f1);
 thisb._postProcess(kJob);
 }
 // update the job text
 kJob.data.name = nothingName+kJob.data.count--;
 kJob.update(function() {});
 },1000);
},

// (not required)
// After the job completes, we do some processing in postDoNothing() and then call
// addToTrackList to insert a new track into JBrowse
_postProcess(kJob) {

 // insert track into trackList.json
 this.postDoNothing(kJob,function(newTrackJson) {
 postAction.addToTrackList(kJob,newTrackJson);
 });
},

// (not required)
// here, we do some arbitrary post prosessing.
// in this example, we are setting up a jbrowse track from a canned template.
postDoNothing(kJob,cb) {

 let templateFile = approot+'/bin/nothingTrackTemplate.json';
 let newTrackJson = [JSON.parse(fs.readFileSync(templateFile))];

 let trackLabel = kJob.id+' sample job results';

 newTrackJson[0].label = "SAMPLEJOB_"+kJob.id+Math.random();
 newTrackJson[0].key = trackLabel;

 kJob.data.track = newTrackJson[0];
 kJob.update(function() {});

 cb(newTrackJson);
}

Note that queue data can be changed with the following:

kJob.data.name = nothingName+kJob.data.count--;
kJob.update(function() {});

Configuration

To enable: edit jbconnect.config.js add the sampleJobService line under services and disable the other services.

module.exports = {
 jbrowse: {
 services: {
 'sampleJobService': {enable: true, name: 'sampleJobService', type: 'workflow'}, <====
 'localBlastService': {enable: false, name: 'localBlastService', type: 'workflow', alias: "jblast"},
 'galaxyBlastService': {enable: false, name: 'galaxyBlastService', type: 'workflow', alias: "jblast"}
 },
 }
};

Monitoring processing

The job runner is responsible for monitoring the state of any potential lengthy analysis opertion.
If the job runner service is intended to perform some lengthy analysis, there would have
to be some mechanism to detect the completion of the operation.

Completion processing

To complete a job, call one of the following.

(success) kJob.kDoneFn();
(fail) kJob.kDoneFn(new Error("failed because something"));

This will change the status of the job to either completed or error.

In our example, the helper library postAction handles the completion:

postAction.addToTrackList(kJob,newTrackJson);

Upon calling kJob.kDoneFn(), the module is required to perform any necessary cleanup.

API

Namespace: AuthController

Local Navigation

	Description

	Function: login

	Function: login

	Function: logout

	Function: register

	Function: loginstate

	Function: provider

	Function: callback

	Function: disconnect

Description

Authentication Controller.

See also Passport model.

Function: login

Render the login page

The login form itself is just a simple HTML form:

<form role="form" action="/auth/local" method="post">
 <input type="text" name="identifier" placeholder="Username or Email">
 <input type="password" name="password" placeholder="Password">
 <button type="submit">Sign in</button>
</form>

You could optionally add CSRF-protection as outlined in the documentation:
http://sailsjs.org/#!documentation/config.csrf

A simple example of automatically listing all available providers in a
Handlebars template would look like this:

{{#each providers}}
 {{name}}
{{/each}}

The next parameter can specify the target URL upon successful login.

Example: GET http://localhost:1337/login?next=http://localhost:1337/jbrowse?data=sample_data/json/volvox

	
login(req, res)

	
	Arguments

	
	req (Object) – request

	res (Object) – response

Function: login

	
login()

	

Function: logout

Log out a user and return them to the homepage

Passport exposes a logout() function on req (also aliased as logOut()) that
can be called from any route handler which needs to terminate a login
session. Invoking logout() will remove the req.user property and clear the
login session (if any).

For more information on logging out users in Passport.js, check out:
http://passportjs.org/guide/logout/

Example: GET http://localhost:1337/logout

	
logout(req, res)

	
	Arguments

	
	req (Object) – request

	res (Object) – response

Function: register

	
register()

	

Function: loginstate

get login state

GET http://localhost:1337/loginstate

Example Result:

{
 "loginstate": true,
 "user": {
 "username": "juser",
 "email": "juser@jbrowse.org"
 }
}

	
loginstate(req, res)

	
	Arguments

	
	req (object) – request

	res (object) – response

Function: provider

Create a third-party authentication endpoint

	
provider(req, res)

	
	Arguments

	
	req (Object) – request

	res (Object) – response

Function: callback

Create a authentication callback endpoint

This endpoint handles everything related to creating and verifying Pass-
ports and users, both locally and from third-aprty providers.

Passport exposes a login() function on req (also aliased as logIn()) that
can be used to establish a login session. When the login operation
completes, user will be assigned to req.user.

For more information on logging in users in Passport.js, check out:
http://passportjs.org/guide/login/

	
callback(req, res)

	
	Arguments

	
	req (Object) – request

	res (Object) – response

Function: disconnect

	
disconnect()

	

 Index

Index

 _
 | A
 | B
 | C
 | D
 | E
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | P
 | R
 | S
 | U
 | Z

_

 	
 	_activeMonitor() (built-in function)

 	_createJob() (built-in function)

 	_destroyJob() (built-in function)

 	_jobRunner() (built-in function)

 	_kueEventMonitor() (built-in function)

 	
 	_listJobs() (built-in function)

 	_processNextEvent() (built-in function)

 	_pushEvent() (built-in function)

 	_syncJobs() (built-in function)

 	_updateJob() (built-in function)

A

 	
 	Add() (built-in function)

 	add() (built-in function)

 	addPluginRoute() (built-in function)

 	
 	addRoute() (built-in function)

 	addService() (built-in function)

 	addToTrackList() (built-in function)

B

 	
 	buildWebpack() (built-in function)

C

 	
 	callback() (built-in function)

 	
 	cleanTracks() (built-in function)

D

 	
 	disconnect() (built-in function)

 	
 	doExtScripts() (built-in function)

E

 	
 	execute() (built-in function)

G

 	
 	Get() (built-in function), [1], [2], [3]

 	get() (built-in function), [1], [2], [3], [4], [5]

 	get_tracklist() (built-in function)

 	
 	getClientDependencies() (built-in function)

 	getMergedConfig() (built-in function)

 	getPlugins() (built-in function)

 	GetTrackList() (built-in function)

H

 	
 	hashPassword() (built-in function)

I

 	
 	Init() (built-in function), [1], [2], [3]

 	init() (built-in function)

 	injectIncludesIntoHtml() (built-in function)

 	
 	injectPlugins() (built-in function)

 	injectTracklist() (built-in function)

 	install_database() (built-in function)

K

 	
 	kJob() (built-in function)

 	
 	kJobs() (built-in function)

L

 	
 	login() (built-in function), [1]

 	
 	loginstate() (built-in function)

 	logout() (built-in function)

M

 	
 	mergeConfigJs() (built-in function)

 	
 	Modify() (built-in function)

 	modify() (built-in function)

N

 	
 	nonAdminAction() (built-in function)

P

 	
 	PauseWatch() (built-in function)

 	
 	provider() (built-in function)

R

 	
 	register() (built-in function)

 	Remove() (built-in function), [1]

 	remove() (built-in function)

 	
 	removeIncludesFromHtml() (built-in function)

 	removePlugins() (built-in function)

 	Resolve() (built-in function)

 	ResumeWatch() (built-in function)

S

 	
 	safeCopy() (built-in function)

 	safeWriteFile() (built-in function)

 	setupPlugins() (built-in function)

 	sJob() (built-in function)

 	sJobs() (built-in function)

 	
 	StartWatch() (built-in function)

 	Submit() (built-in function)

 	submit() (built-in function)

 	Sync() (built-in function), [1]

 	SyncTest() (built-in function)

U

 	
 	unsetupPlugins() (built-in function)

Z

 	
 	zapRedis() (built-in function)

 Client Side Demo

Client Side Demo

The server can be tested with the Sequence Search plugin feature that is automatically installed.

To run:

[image: _images/server-search.png]

	Select Queue sequence search from the Track menu. This is functionally equivelant
to add Add sequence search track, which is the client-side regexSearch plugin.
However, this performs the search on the server side through a job submission.

	Enter a DNA sequence and click the Search button.

	The job queue panel will show activity while the job is being run. When completed,
The job will show a green status icon.

	The track selector will show results under the Search Results section. View the
search results by clicking.

 Quick Start

Quick Start

The quick start instructions demonstrate installing JBConnect with JBrowse
loaded as a an NPM module (since JBConnect is generally intended to be a companion of JBrowse.
JBrowse may also be installed in a separate directory.
(See JBrowse Installed In Separate Directory.)

Pre-Install

JBConnect requires sailsjs [https://sailsjs.com/] and redis [https://redis.io/] . Redis is only used by the queue framework
(kue [https://www.npmjs.com/package/kue])

yum install redis
redis-server
npm install -g sails@1.0.2

Install

Install the JBConnect and JBrowse. jb_setup.js ensures the sample data is loaded.

git clone http://github.com/gmod/jbconnect
cd jbconnect
npm install
npm install @gmod/jbrowse@1.15.1
patch node_modules/@gmod/jbrowse/setup.sh fix_jbrowse_setup.patch
./utils/jb_setup.js

The patch operation is needed to make JBrowse 1.15.1 setup.sh run properly.
If JBrowse is installed in another location, the patch should be run before setup.sh.

Run

Launch the server.

sails lift

From a web browser, access the application.

http://localhost:1337/jbrowse

You will arrive at the following screen

[image: _images/login.png]
The default username/password: juser/password

_static/up-pressed.png

_static/up.png

_images/login-register.png
http://localhost:1337/jbrowse

@ http://localhost:1337/register

JBrowse Register New User

JBrowse Login

Usemame

Username (8 char mi

Password

Password

O juser

35,000 40,000 45,000

juser esssscee |

Signin Register |

_images/login.png

_images/job-panel.png
16

)

Galaxy workfiow: JBlast Demo w hits

Galaxy workflow: JBlast Demo w/ hits No

5| s

14 & | Galaxy workflow: JBlast Demo w hits

13 4 | Galaxy workiow: JBlast Sim w Hits

12 & | Galaxy workflow: JBlast Demo w hits

& ACACTATACTTATTACTATCTACGGGTCGA
@ | coaren

7 &9 | cATsearch

6 & | NCBLblastworkfiow,s

3 £4 | simblastworkfowjs

_images/login-integrated.jpg
0 Loon
34, 36,000 48,

Username Password

Signin Register —_—
ence ‘ nto 5*1

_images/server-search.png
blast 125

@ Open track file or URL

@ Add combination track

@ Server Search Sequence

Queue a server-side DNA sequence
search on the refseq. The result appears a
new track under "Search Results in the
track selector.

Search for ®DNA OAA

|GATTACA

4 Add sequence search track

[“/ignore Case
[]Treat as regular expression

Search strands
[vIForward

[VIReverse

ll search || X cancel

GATTACA search

NCBIblast worklows

HCBIblast workflows

tatasearch

~ Reference sequence 1

Reference sequence

~ Search Results 2
(/127 AGCTAC results
V128 GATTACA results
4

~ Transcripts

_static/ajax-loader.gif

_images/sample-dialog.png
Sample Analysis

Add CUSTOM_DATA= attribute to all features in the
sample result.
hello world

Submit | | Cancel

_images/sample-menu.png
View

Analyze Help
Primer3 - Submit Highlighted Region
BLAST DNA sequence

BLAST highlighted region
JBSample Job - Submit Highlighted Region

Reset Analysis Results

_static/comment-bright.png

_images/jb-jbs-diagram.png
JBConnect Hooks (Plugins) Workflow Service
Client & Server Plugins.

le: JBlast

JBConnect

JBConnect REST API/ HTTP

Socket.io (Websockets)
or

Custom Workflows.

Waterline

A':ichE, DATABASE

Traditional

JBrowse Plugins

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 JBConnect

 		
 Features

 		
 Directory Layout

 		
 jbutil Command

 		
 Queue Framework

 		
 Configuration

 		
 Client-Side Plugins

 		
 Web Includes

 		
 Standalone Register / Login / Logout Routes

 		
 Login/Logout Panel

 		
 Job Queue Panel

 		
 Test Framework

 		
 Documentation Framework

 		
 Configuration Options

 		
 JBrowse Installed In Separate Directory

 		
 Configuration Files

 		
 globals.js

 		
 Limiting Query Size

 		
 Installing JBConnect jbh-hooks

 		
 JBClient Plugin

 		
 Job Service Configuration

 		
 Extending jbutil

 		
 JBConnect Hooks

 		
 Directory Layout

 		
 package.json

 		
 Configurations

 		
 Client-Side JBrowse Plugins

 		
 Developing JBrowse Plugins Under the Framework

 		
 Web Include (client dependencies)

 		
 Extending Commands

 		
 Additional non-jbutil commands

 		
 Sails Module Layout

 		
 Job Service

 		
 Function Map

 		
 Calling fmap functions

 		
 Function Name Overlap

 		
 Obligatory Functions for Job Runners

 		
 Job Service Configuration

 		
 Submitting a Job

 		
 Tutorials

 		
 JBConnect Hook Tutorial

 		
 JBCdemo JBrowse Plugin

 		
 api/hook/index.js

 		
 Extending jbtuil command

 		
 bin/postinstall.js

 		
 globals.js & workflowFilter

 		
 demo-job.demo.wf.js Worflow Script

 		
 Configuration of localCommonService

 		
 Creating a Stand-Alone Job Service for local workflow processing

 		
 Job Runner functions

 		
 Configuration

 		
 Monitoring processing

 		
 Completion processing

 		
 API

 		
 Namespace: AuthController

 		
 Description

 		
 Function: login

 		
 Function: login

 		
 Function: logout

 		
 Function: register

 		
 Function: loginstate

 		
 Function: provider

 		
 Function: callback

 		
 Function: disconnect

 		
 Module: controllers/DatasetController

 		
 Description

 		
 Function: get

 		
 Module: controllers/JobActiveController

 		
 Description

 		
 Function: get

 		
 Module: controllers/JobController

 		
 Description

 		
 Function: get

 		
 Function: submit

 		
 Module: controllers/ServiceController

 		
 Description

 		
 Function: get

 		
 Module: controllers/TrackController

 		
 Description

 		
 Function: get

 		
 Function: get_tracklist

 		
 Function: add

 		
 Function: modify

 		
 Function: remove

 		
 Module: controllers/UserController

 		
 Description

 		
 Function: get

 		
 Module: models/Dataset

 		
 Description

 		
 Function: Init

 		
 Function: Get

 		
 Function: Resolve

 		
 Function: Sync

 		
 Module: models/Job

 		
 Description

 		
 Function: Init

 		
 Function: Get

 		
 Function: Remove

 		
 Function: Submit

 		
 Function: _jobRunner

 		
 Function: _kueEventMonitor

 		
 Function: _pushEvent

 		
 Function: _processNextEvent

 		
 Function: _createJob

 		
 Function: _updateJob

 		
 Function: kJob

 		
 Function: sJob

 		
 Function: _destroyJob

 		
 Function: _listJobs

 		
 Function: _syncJobs

 		
 Function: kJobs

 		
 Function: sJobs

 		
 Module: models/JobActive

 		
 Description

 		
 Function: Init

 		
 Function: Get

 		
 Function: _activeMonitor

 		
 Module: models/Passport

 		
 Description

 		
 Function: hashPassword

 		
 Module: models/Service

 		
 Description

 		
 Module: models/Track

 		
 Description

 		
 Function: Init

 		
 Function: StartWatch

 		
 Function: PauseWatch

 		
 Function: ResumeWatch

 		
 Function: Get

 		
 Function: GetTrackList

 		
 Function: Add

 		
 Function: Modify

 		
 Function: Remove

 		
 Function: Sync

 		
 Function: SyncTest

 		
 Function: cleanTracks

 		
 Module: models/User

 		
 Description

 		
 Module: policies/bearerAuth

 		
 Description

 		
 Module: policies/isAdmin

 		
 Description

 		
 Function: nonAdminAction

 		
 Module: policies/passport

 		
 Description

 		
 Module: policies/sessionAuth

 		
 Description

 		
 Module: services/jbutillib

 		
 Description

 		
 Function: doExtScripts

 		
 Function: getMergedConfig

 		
 Function: mergeConfigJs

 		
 Function: getClientDependencies

 		
 Function: injectIncludesIntoHtml

 		
 Function: setupPlugins

 		
 Function: removeIncludesFromHtml

 		
 Function: unsetupPlugins

 		
 Function: safeCopy

 		
 Function: safeWriteFile

 		
 Function: install_database

 		
 Function: zapRedis

 		
